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SUMMARY

In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational
program is in progress to aid in data interpretation and to assess the accuracy of current radiation
models for future mission applications. To estimate the ionizing radiation environment at the
LDEF dosimeter locations, scoping calculations for a simplified (one-dimensional) LDEF mass
model have been made of the primary and secondary radiations produced as a function of
shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton
cosmic-ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced
radioactivity and dose measurements have been made to test a recently developed model of trapped
proton anisotropy.

INTRODUCTION
Purpose

A calculational program is in progress as part of the LDEF ionizing radiation investigations,
with the following objectives:

Data Analysis Support - Calculations are being used to help interpret the LDEF ionizing radiation

measurements. In most cases the LDEF dosimetry data represent an integration of several effects,
such as contributions from different environment sources (galactic and trapped radiation), influence
of shielding variations (from both experimental apparatus and spacecraft structure), and secondary
particle contributions from nuclear interactions. The calculations can be used to “unfold” the
dosimetry data to estimate the influence of these individual effects, which is needed if the LDEF
data are to be fully applicable for future missions having different orbit parameters and spacecraft

configurations.

Model Validation - LDEF data are being atilized to evaluate the accuracy of present ionizing
radiation models. This includes models for predicting both the “external”’ environments (ionizing
radiation fields external to the spacecraft) and the “internal” environments (ionizing radiation
environments at locations internal to the spacecraft, which include the effects of radiation
interactions and transport).

*Work partially supported by NASA Marshall Space Flight Center, Huntsville, AL, Contract NAS8-38566.
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LDEF Data for Radiation Model Validaton

The LDEF mission had several unique features that are important to the validation of ionizing
radiation models:

Well Instrumented - A variety of different types of radiation dosimetry, with multiple dosimeters
of each type,were onboard, providing a high-confidence data set for benchmarking the models.
Also, dosimeters were placed at various locations on the spacecraft and behind various thicknesses
of shielding, allowing tests of both external environment models and the transport models for
predicting the radiation environment internal to the spacecraft.

Long Exposure - Dosimetry results have high statistical accuracy due to the long mission
duration. This is particularly important for checking model predictions of the hi gh-LET component
of cosmic rays and nuclear interaction products, which is of key importance in assessing radiation-
induced biological and electronics damage.

Fixed Oﬁentaﬁon - The very stable orientation of LDEF during the entire mission (< 0.2°, ref.

Thus, the LDEF data provide a significant opportunity for model improvement in addressing
ionizing radiation issues for future missions, as summarized in figure 1.

APPROACH

Figure 2 gives an overview of the calculational approach and indicates some of the specific
models being used. External environment models include the AP8 and AE8 models for trapped
protons and electrons (refs. 3,4), the MSEC model for predicting trapped proton anisotropy (ref.
2), and the galactic proton and heavy ion environments given by the NRL. CREME model (ref. 5).
Transport models include both simplified, one-dimensional models commonly used in quick
assessments of space radiation effects -- the MSEC analytical models for proton and electron-
bremsstrahlung transport (refs. 6,7), SHIELDOSE (ref. 8), and CREME (ref. 5) -- as well as
three-dimensional Monte Carlo codes, HETC (ref. 9) and MORSE (ref. 10). The Monte Carlo
codes take into account in detail the secondary particle production and transport and can treat three-
dimensional, multimedia Spacecraft models, capabilities which are needed in some cases for
definitive comparisons with the LDEF measurements.



This calculational approach can provide predictions for all of the different types of LDEF
radiation measurements - namely: (a) induced radioactivity, including both the activation of metal
samples (Ni, Co, V, Ta, and In) placed in LDEF experiment packages and the activation of various
spacecraft structural components (e.g., trunnions, experiment tray clamps); (b) measurements of
tissue-equivalent absorbed dose using thermoluminescence detectors (TLDs); (c) measurements
of linear-energy-transfer (LET) spectra by plastic nuclear track detectors (PNTDs); and (d)
particle fluence and energy spectra, including secondary neutrons, as measured by fission foils,
specific activation reactions, low-energy neutron detectors (SLiF foils), and PNTDs.

The shaded areas in figure 2 indicate the emphasis of the modeling to date. An important
approximation for the initial calculations is that a very simplified (in most cases one-dimensional)
spacecraft model has been used. To obtain definitive comparisons with most of the measurements,
detailed shielding variations about the detector need to be taken into account, so development ofa

3.D LDEF mass model for radiation calculations is underway (ref. 11).
RESULTS

Emphasis of the initial calculations has been in two areas: (a) scoping calculations of the
importance of different exposure sources and secondary particles to the induced radiation
environment, and (b) calculations and comparisons with measurements to check the accuracy of a
recent model for predicting the anisotropy of trapped protons.

Scoping Calculations

The penetrating radiation environment for the LDEF orbit consisted of protons (with a
relatively small contribution of heavier ions) trapped in the earth’s magnetic field, protons and
heavier ions of galactic origin, and albedo neutrons and protons due to galactic cosmic-ray
bombardment of the earth’s atmosphere (ref. 12). Since the angular variation of these sources is
quite different (figure 3), and since material attenuation within LDEEF is different for each source,
an important question for data interpretation concerns the magnitude of the contribution from each
component at the LDEF measurement locations. Thus, a set of scoping calculations was made to
obtain a general indication of (a) the importance of different space radiation sources, (b) the
importance of secondary particles generated within LDEF, and (c) the spatial variation of the
induced radiation environment.

The calculations were carried out using Monte Carlo transport methods, with the SAIC
version of the HETC code (ref. 13) for high-energy transport and the MORSE code for low-energy
(< 20 MeV) neutron transport. These were only scoping estimates because several important
approximations have been made in this initial work -- €.g., a one-dimensional (aluminum slab)
model of LDEF was used, and the angular variation of the incident radiation (particularly the
trapped proton anisotropy) was not accurately simulated. Subsequent calculations using a 3-D
LDEF mass model are planned to remove these approximations.

Example results are shown in figure 4 for the depth-dependent particle fluence, and figure 5
shows fluence spectra at a particular depth (10 g/cm?). (To roughly relate these depths in terms of
areal density to LDEF, if the LDEF spacecraft is represented as a cylinder the average areal density
is 32 g/cm? across the diameter and and 68 g/cm? end to end.) These results indicate that the
contribution from albedo neutrons and protons is negligible, and that the relative importance of
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trapped vs. galactic sources depends on the shielding depth and radiation effect of interest. In
terms of fluence over all energies, fi gure 5 shows that secondary neutrons dominate for depths
210 g/cm?.

A report on additional results from these calculations, including the induced radioactivity in
aluminum and stainless steel produced by different sources and particle types, is available (ref.
14), and a summary has been accepted for journal publication (ref. 15).

Trapped Proton Anisotropy

The ionizing radiation dose at most shielding depths for spacecraft in low-earth orbit (LEO) is
produced mainly by trapped protons in the South Atlantic Anomaly (SAA) region. The standard
NASA models (APSMIN and AP8MAX) for describing the trapped proton environment do not
provide an angular dependence, although the proton flux is actually highly anisotropic in the SAA.
This anisotropy has not been an important practical consideration for most previous LEO missions
because the varying spacecraft attitude during passage through the radiation belt “averages out”
anisotropic effects over many orbits. However, for the fixed orientation of LDEF, and for several
planned missions (e.g., Space Station Freedom, Earth Observing Satellite) where the spacecraft
will be gravity-gradient stabilized, the cumulative proton exposure will remain anisotropic, and will
result in a highly nonuniform dose distribution around the spacecraft.

Watts, et al. (ref. 2) have recently developed a model to predict orbit-average, angular
dependent trapped proton flux spectra from the standard omnidirectional APSMIN and APSMAX

Anisotropy of Tray Clamp Activation

The measured induced radioactivity of the aluminum clamps (ref. 16) used to secure the LDEF
experiment trays provides very appropriate data for checking the anisotropy model since these
clamps are located on all sides of the spacecraft and at various directions relative to the flight
vector. Also, since the clamps are located on the outer surface and are thin (1.3 g/cm2), we expect
(based on the scoping Monte Carlo calculations; e.g., figure 4) the activation from galactic protons
and secondary particles to be small, so the measured activation is predominantly from the primary
trapped protons.

The 22Na production in aluminum has been predicted as a function of direction (in the
horizontal plane perpendicular to the LDEF longitudinal axis) and for various shielding depths
(figure 6). These calculations were made for a point behind an aluminum slab shield (assuming



The results (figure 6) show minimum activation near the East (leading edge) of the spacecraft
and maximum activation near the West (trailing) direction. The predicted anisotropy in terms of the
ratio of West-side activation to East-side activation varies from a factor of about 1.8 near the
surface to a factor of 3.5 at 10 g/cm? depth. This increase in anisotropy with depth is due to the
increasing anisotropy of the incident protons at higher energies (refs. 2, 18).

A comparison of the predicted 22Na activation at a depth corresponding to the mid-depth of the
tray clamp (0.64 g/cm2) with the measured activation (ref. 16) is shown in fig. 7, indicating very
good agreement for these preliminary comparisons. The angular variations are similar in shape,
with the maximum/minimum ratio with respect to direction being 1.8 for the measurements vs. 2.0
for the calculations.

The calculated results in figure 7 are lower than the measurements by about 15% for directions
in the vicinity of West, and lower by about 50% for directions near East. These preliminary
absolute magnitude comparisons suggest a better accuracy for the AP8 trapped proton model than
the factor of two uncertainty commonly quoted.

Dose Anisotropy

Predictions of the absorbed dose anisotropy have also been made and compared with the initial
TLD measurements reported by Benton, et al. (ref. 19) for Experiments PO006 (bay-row location
F-2, near the trailing edge) and M0004 (tray position F-8, near leading edge). These initial
calculations were also made assuming one-dimensional, plane-geometry shielding, so the results
are preliminary.

The predicted ratios are compared with the measured PO006-t0-M0004 TLD dose ratios (using
data from ref. 18 with interpolation applied to obtain common shielding depths) in figure 8. These
preliminary comparisons also indicate that the anisotropy model predictions are consistent with
LDEF data.

Directionality of Trunnion Activation

The measured spatial dependence of radioisotopes produced in the stainless steel LDEF
trunnions (refs. 20, 21) also provide an opportunity for checking the anisotropy model. To date,
calculations have been made to compare with only a small subset of the measured data, with some
initial comparisons for the 3¥Mn activity given here.

The calculations were made for a “simplified” 3-D geometry with the body of the LDEF
spacecraft and experiment trays modeled as a homogeneous aluminum cylinder (with an average
density to preserve the total mass), and with the earth-end trunnion represented as a stainless steel
rod. The activation ata point in the trunnion was computed by (a) determining the areal density
along a 3-D grid of rays emanating from the point (720 rays were used, corresponding to the polar-
azimuthal angular grid used in generating the directional proton environment), (b) computing the
attenuation for each ray using the Burrell 1-D proton transport code, with solid-angle weighting for
each ray to get the cumulative proton spectrum at the point, and (c) folding this spectrum with
cross sections for 34Mn production from the constituents of stainless steel.

Shown in figure 9 is a comparison of the calculational results with the measurements of Moss
and Reedy (ref. 20) for the radial distribution of ¥Mn produced in a section of the trunnion
centered 3.5 in. from the end (“Section D” in fig. 8a of ref. 20 ) of the East (leading edge)
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trunnion. These results are for two angular segments of the trunnion having surface normals
pointed in the zenith direction (labeled “space”) and toward the center of the earth (labeled “earth”).
The trapped proton anisotropy model predicts that the external fluxes directed toward the “space”
and “earth” directions should be essentially the same, whereas the measurements and transport
calculation results indicate a lower activation in the space direction. A separate calculation made
with only the trunnion present shows that the lower activation observed in the space direction is
due to the shielding effect of the LDEF spacecraft.

The agreement between the predicted and measured activations in fi gure 9 is quite good near
the surface of the trunnion, but the agreement becomes somewhat worse near the center. Results
from the 1-D Monte Carlo calculations (ref. 14) show that galactic protons contribute substantially
at penetration depths comparable to the center of the trunnion. Thus, the underprediction of the
activation deep into the trunnion indicated in figure 9 may be due to the neglect of incident galactic
protons in these initial calculations.

CONCLUSIONS

LDEF has provided unique data which, based on preliminary comparisons of initial
measurements and predictions, confirms a recently developed model for the anisotropy of trapped
protons. This anisotropy is important in predicting the radiation exposure of other fixed-
orientation spacecraft in LEO, such as the planned Space Station and Earth Observing Satellite
missions.

Preliminary comparisons also indicate that the LDEF radiation dosimetry data are in good
agreement with predictions using AP8 trapped proton flux model. Such results can help quantify
the limits on safety margins commonly applied to account for radiation environment modelin g
uncertainties in spacecraft design and parts selection and in crew dose assessments.

The emphasis of near-term future calculations is expected to be on model comparisons with
LDEF LET measurements (e.g., ref. 22). LET spectra generally provide a more stringent test of
the environment and transport models than considered to date for induced radioactivity and dose
comparisons, and LET is fundamental in assessing electronics upsets and biological damage. For
future calculations a three-dimensional LDEF geometry/mass model will be implemented to
properly account for dosimetry shielding effects and provide more definitive assessments of the
radiation models.
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Figure 3. Illustration of the nonuniform angular variation of LDEF exposure to ionizing radiation.

100 L S D S A R S e s s S ER
Fluence ]
Comparisons 1
7’ Trapped Protons Neutrons trom Galactic Protons 1
109 = = - ER
o Tl T
E N
e o 0
@ 8 na
g 10 Tl E
-~ 3
=2 I 1
- R T
5 e 7 1
a @ Neutrons from Albedo Protons
S 107 a
w - ¢
w o 3
a C ]
L Protons trom Albedo Protons )
L *\.\\1_,
v Protons from Albedo Neutrons ]
L s | 1 L 4 1 L I L | L | | L i L
10° :
0 10 20 30 40 50 60 70 80 90 100

Depth in Aluminum (g / cm? )
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environments are all assumed incident isotropically on one side (0 depth) of an
aluminum slab 100 g/cm2 in thickness.
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